本地英文版地址: ../en/query-dsl-mlt-query.html
more_like_this 查询(以下简称 MLT)查找与给定文档集“相似(like)”的文档。 为此,MLT 选择这些输入文档的一组代表性词项,使用这些词项形成查询,执行查询并返回结果。 用户控制输入文档、如何选择词项以及如何形成查询。
一个最简单的用例是请求与提供的文本相似的文档。 在这里,我们要求所有电影的“title”和“description”字段中有类似“Once upon a time”的文本,将所选词项的数量限制为12个。
GET /_search { "query": { "more_like_this" : { "fields" : ["title", "description"], "like" : "Once upon a time", "min_term_freq" : 1, "max_query_terms" : 12 } } }
一个更复杂的用例是将文本与索引中已经存在的文档混合。 在这种情况下,指定文档的语法类似于Multi GET API中使用的语法。
GET /_search { "query": { "more_like_this" : { "fields" : ["title", "description"], "like" : [ { "_index" : "imdb", "_id" : "1" }, { "_index" : "imdb", "_id" : "2" }, "and potentially some more text here as well" ], "min_term_freq" : 1, "max_query_terms" : 12 } } }
最后,用户可以混合一些文本、一组选定的文档,但也可以提供不一定出现在索引中的文档。 为了提供索引中没有的文档,语法类似于 人工文档。
GET /_search { "query": { "more_like_this" : { "fields" : ["name.first", "name.last"], "like" : [ { "_index" : "marvel", "doc" : { "name": { "first": "Ben", "last": "Grimm" }, "_doc": "You got no idea what I'd... what I'd give to be invisible." } }, { "_index" : "marvel", "_id" : "2" } ], "min_term_freq" : 1, "max_query_terms" : 12 } } }
假设我们想要找到所有与给定的输入文档相似的文档。
显然,输入文档本身应该是该类型查询的最佳匹配。
根据 Lucene 评分公式,主要原因是 tf-idf(词频-逆向文档频率) 最高的词项。
因此,输入文档中具有最高 tf-idf 的词项是该文档的很好的代表,并且可以在析取(disjunctive)查询(or或OR
)中用来检索相似的文档。
MLT查询简单地从输入文档中提取文本,分析它,通常对字段使用相同的分析器,然后选择具有最高 tf-idf 的前 K 个词项来形成这些词项的析取(disjunctive)查询。
要执行 MLT 的字段必须进行索引,并且必须是 text
或 keyword
类型。
此外,对文档使用 like
时,必须启用 _source
,或者字段必须是stored
或 存储(store) term_vector
(词项向量)。
为了加速分析,在索引时存储词项 向量(vector) 会有所帮助。
例如,如果我们希望对“title”和“tags.raw”字段执行 MLT,我们可以在索引时显式存储它们的 term_vector
。
我们仍然可以在“description”和“tags”字段上执行 MLT,因为 _source
在默认情况下是启用的,但是这些字段的分析速度不会加快。
PUT /imdb { "mappings": { "properties": { "title": { "type": "text", "term_vector": "yes" }, "description": { "type": "text" }, "tags": { "type": "text", "fields" : { "raw": { "type" : "text", "analyzer": "keyword", "term_vector" : "yes" } } } } } }
唯一需要的参数是 like
,所有其他参数都有合理的默认值。
有三种类型的参数:一种用于指定文档输入,另一种用于词项选择 以及 查询的形成。
文档输入参数
|
MLT查询唯一需要的参数是 |
|
|
|
要从中提取和分析文本的字段列表。 |
词项选择(term selection)参数
|
将被选择的查询词项的最大数量。
增加该值可以以查询执行速度为代价而获得更高的准确性。
默认为 |
|
最小词项频率,低于该频率的词项将从输入文档中忽略。默认为 |
|
最小文档频率,低于该频率的词项将从输入文档中忽略。默认为 |
|
最大文档频率,高于该频率的词项将从输入文档中忽略。
这对于忽略高频词(如停止词)很有用。
默认为无限制( |
|
最小单词长度,小于该长度的单词将被忽略。
旧名称 |
|
最大单词长度,大于该长度的单词将被忽略。
旧名称 |
|
停止词数组。 这个集合中的任何单词都被认为是“不感兴趣的”并被忽略。 如果分析器允许停止词,你可能想要告诉 MLT 显式地忽略它们,因为为了文档相似性的目的,假设“停止词从不有趣”似乎是合理的。 |
|
用于分析自由格式文本的分析器。
默认为与 |
查询形成(query formation)参数
|
形成析取查询后,该参数控制必须匹配的词项的数量。
语法与 minimum should match 相同。
(默认为 |
|
控制如果任何指定字段不属于支持的类型( |
|
所形成的查询中的每一项都可以被它们的 tf-idf 分数进一步增强。
这将设置使用此功能时要使用的 boost(增强) 因子。
默认为停用 ( |
|
指定输入文档是否也应包含在返回的搜索结果中。默认为 |
|
设置整个查询的增强(boost)值。默认为 |
为了更好地控制相似文档查询的构造,值得考虑编写定制的客户端代码,将示例文档中的选定的词项组合成具有所需设置的 bool 查询。
在 more_like_this
中从一段文本中选择“感兴趣的”单词的逻辑也可以通过 TermVectors API访问。
例如,使用 TermVectors API,可以向用户提供在文档文本中找到的主题关键词的选择,允许他们选择感兴趣的单词进行深入研究,而不是使用 more_like_this
使用的更“黑盒(black-box)”的匹配方法。
- Elasticsearch权威指南: 其他版本:
- Elasticsearch是什么?
- 7.7版本的新特性
- 开始使用Elasticsearch
- 安装和设置
- 升级Elasticsearch
- 搜索你的数据
- 查询领域特定语言(Query DSL)
- SQL access(暂时不翻译)
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- 聚合
- 度量(metric)聚合
- 桶(bucket)聚合
- adjacency_matrix 聚合
- auto_date_histogram 聚合
- children 聚合
- composite 聚合
- date_histogram 聚合
- date_range 聚合
- diversified_sampler 聚合
- filter 聚合
- filters 聚合
- geo_distance 聚合
- geohash_grid 聚合
- geotile_grid 聚合
- global 聚合
- histogram 聚合
- ip_range 聚合
- missing 聚合
- nested 聚合
- parent 聚合
- range 聚合
- rare_terms 聚合
- reverse_nested 聚合
- sampler 聚合
- significant_terms 聚合
- significant_text 聚合
- terms 聚合
- 给范围字段分桶的微妙之处
- 管道(pipeline)聚合
- 矩阵(matrix)聚合
- 重度缓存的聚合
- 只返回聚合的结果
- 聚合元数据
- Returning the type of the aggregation
- 使用转换对聚合结果进行索引
- 脚本
- 映射
- 删除的映射类型
- 字段数据类型
- alias(别名)
- array(数组)
- binary(二进制)
- boolean(布尔)
- date(日期)
- date_nanos(日期纳秒)
- dense_vector(密集矢量)
- histogram(直方图)
- flattened(扁平)
- geo_point(地理坐标点)
- geo_shape(地理形状)
- IP
- join(联结)
- keyword(关键词)
- nested(嵌套)
- numeric(数值)
- object(对象)
- percolator(渗透器)
- range(范围)
- rank_feature(特征排名)
- rank_features(特征排名)
- search_as_you_type(输入即搜索)
- Sparse vector
- Text
- Token count
- Shape
- Constant keyword
- Meta-Fields
- Mapping parameters
- Dynamic Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Enrich your data
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- CSV Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Enrich Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Inference Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- ILM: Manage the index lifecycle
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat shards
- cat segments
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Document APIs
- Enrich APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create inference trained model
- Delete data frame analytics jobs
- Delete inference trained model
- Evaluate data frame analytics
- Explain data frame analytics API
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get inference trained model
- Get inference trained model stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SAML prepare authentication API
- SAML authenticate API
- SAML logout API
- SAML invalidate API
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management API
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Breaking changes
- Release notes
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1