本地英文版地址: ../en/indices-analyze.html
Analyze APIedit
Performs analysis on a text string and returns the resulting tokens.
GET /_analyze { "analyzer" : "standard", "text" : "Quick Brown Foxes!" }
Path parametersedit
-
<index>
-
(Optional, string) Index used to derive the analyzer.
If specified, the
analyzer
or<field>
parameter overrides this value.If no analyzer or field are specified, the analyze API uses the default analyzer for the index.
If no index is specified or the index does not have a default analyzer, the analyze API uses the standard analyzer.
Query parametersedit
-
analyzer
-
(Optional, string) The name of the analyzer that should be applied to the provided
text
. This could be a built-in analyzer, or an analyzer that’s been configured in the index.If this parameter is not specified, the analyze API uses the analyzer defined in the field’s mapping.
If no field is specified, the analyze API uses the default analyzer for the index.
If no index is specified, or the index does not have a default analyzer, the analyze API uses the standard analyzer.
-
attributes
-
(Optional, array of strings)
Array of token attributes used to filter the output of the
explain
parameter. -
char_filter
- (Optional, array of strings) Array of character filters used to preprocess characters before the tokenizer. See Character filters reference for a list of character filters.
-
explain
-
(Optional, boolean)
If
true
, the response includes token attributes and additional details. Defaults tofalse
. [experimental] The format of the additional detail information is labelled as experimental in Lucene and it may change in the future. -
field
-
(Optional, string) Field used to derive the analyzer. To use this parameter, you must specify an index.
If specified, the
analyzer
parameter overrides this value.If no field is specified, the analyze API uses the default analyzer for the index.
If no index is specified or the index does not have a default analyzer, the analyze API uses the standard analyzer.
-
filter
- (Optional, Array of strings) Array of token filters used to apply after the tokenizer. See Token filter reference for a list of token filters.
-
normalizer
- (Optional, string) Normalizer to use to convert text into a single token. See Normalizers for a list of normalizers.
-
text
- (Required, string or array of strings) Text to analyze. If an array of strings is provided, it is analyzed as a multi-value field.
-
tokenizer
- (Optional, string) Tokenizer to use to convert text into tokens. See Tokenizer reference for a list of tokenizers.
Examplesedit
No index specifiededit
You can apply any of the built-in analyzers to the text string without specifying an index.
GET /_analyze { "analyzer" : "standard", "text" : "this is a test" }
Array of text stringsedit
If the text
parameter is provided as array of strings, it is analyzed as a multi-value field.
GET /_analyze { "analyzer" : "standard", "text" : ["this is a test", "the second text"] }
Custom analyzeredit
You can use the analyze API to test a custom transient analyzer built from
tokenizers, token filters, and char filters. Token filters use the filter
parameter:
GET /_analyze { "tokenizer" : "keyword", "filter" : ["lowercase"], "text" : "this is a test" }
GET /_analyze { "tokenizer" : "keyword", "filter" : ["lowercase"], "char_filter" : ["html_strip"], "text" : "this is a <b>test</b>" }
Custom tokenizers, token filters, and character filters can be specified in the request body as follows:
GET /_analyze { "tokenizer" : "whitespace", "filter" : ["lowercase", {"type": "stop", "stopwords": ["a", "is", "this"]}], "text" : "this is a test" }
Specific indexedit
You can also run the analyze API against a specific index:
GET /analyze_sample/_analyze { "text" : "this is a test" }
The above will run an analysis on the "this is a test" text, using the
default index analyzer associated with the analyze_sample
index. An analyzer
can also be provided to use a different analyzer:
GET /analyze_sample/_analyze { "analyzer" : "whitespace", "text" : "this is a test" }
Derive analyzer from a field mappingedit
The analyzer can be derived based on a field mapping, for example:
GET /analyze_sample/_analyze { "field" : "obj1.field1", "text" : "this is a test" }
Will cause the analysis to happen based on the analyzer configured in the
mapping for obj1.field1
(and if not, the default index analyzer).
Normalizeredit
A normalizer
can be provided for keyword field with normalizer associated with the analyze_sample
index.
GET /analyze_sample/_analyze { "normalizer" : "my_normalizer", "text" : "BaR" }
Or by building a custom transient normalizer out of token filters and char filters.
GET /_analyze { "filter" : ["lowercase"], "text" : "BaR" }
Explain analyzeedit
If you want to get more advanced details, set explain
to true
(defaults to false
). It will output all token attributes for each token.
You can filter token attributes you want to output by setting attributes
option.
The format of the additional detail information is labelled as experimental in Lucene and it may change in the future.
GET /_analyze { "tokenizer" : "standard", "filter" : ["snowball"], "text" : "detailed output", "explain" : true, "attributes" : ["keyword"] }
The request returns the following result:
{ "detail" : { "custom_analyzer" : true, "charfilters" : [ ], "tokenizer" : { "name" : "standard", "tokens" : [ { "token" : "detailed", "start_offset" : 0, "end_offset" : 8, "type" : "<ALPHANUM>", "position" : 0 }, { "token" : "output", "start_offset" : 9, "end_offset" : 15, "type" : "<ALPHANUM>", "position" : 1 } ] }, "tokenfilters" : [ { "name" : "snowball", "tokens" : [ { "token" : "detail", "start_offset" : 0, "end_offset" : 8, "type" : "<ALPHANUM>", "position" : 0, "keyword" : false }, { "token" : "output", "start_offset" : 9, "end_offset" : 15, "type" : "<ALPHANUM>", "position" : 1, "keyword" : false } ] } ] } }
Setting a token limitedit
Generating excessive amount of tokens may cause a node to run out of memory. The following setting allows to limit the number of tokens that can be produced:
-
index.analyze.max_token_count
-
The maximum number of tokens that can be produced using
_analyze
API. The default value is10000
. If more than this limit of tokens gets generated, an error will be thrown. The_analyze
endpoint without a specified index will always use10000
value as a limit. This setting allows you to control the limit for a specific index:
PUT /analyze_sample { "settings" : { "index.analyze.max_token_count" : 20000 } }
GET /analyze_sample/_analyze { "text" : "this is a test" }
- Elasticsearch权威指南: 其他版本:
- Elasticsearch是什么?
- 7.7版本的新特性
- 开始使用Elasticsearch
- 安装和设置
- 升级Elasticsearch
- 搜索你的数据
- 查询领域特定语言(Query DSL)
- SQL access(暂时不翻译)
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- 聚合
- 度量(metric)聚合
- 桶(bucket)聚合
- adjacency_matrix 聚合
- auto_date_histogram 聚合
- children 聚合
- composite 聚合
- date_histogram 聚合
- date_range 聚合
- diversified_sampler 聚合
- filter 聚合
- filters 聚合
- geo_distance 聚合
- geohash_grid 聚合
- geotile_grid 聚合
- global 聚合
- histogram 聚合
- ip_range 聚合
- missing 聚合
- nested 聚合
- parent 聚合
- range 聚合
- rare_terms 聚合
- reverse_nested 聚合
- sampler 聚合
- significant_terms 聚合
- significant_text 聚合
- terms 聚合
- 给范围字段分桶的微妙之处
- 管道(pipeline)聚合
- 矩阵(matrix)聚合
- 重度缓存的聚合
- 只返回聚合的结果
- 聚合元数据
- Returning the type of the aggregation
- 使用转换对聚合结果进行索引
- 脚本
- 映射
- 删除的映射类型
- 字段数据类型
- alias(别名)
- array(数组)
- binary(二进制)
- boolean(布尔)
- date(日期)
- date_nanos(日期纳秒)
- dense_vector(密集矢量)
- histogram(直方图)
- flattened(扁平)
- geo_point(地理坐标点)
- geo_shape(地理形状)
- IP
- join(联结)
- keyword(关键词)
- nested(嵌套)
- numeric(数值)
- object(对象)
- percolator(渗透器)
- range(范围)
- rank_feature(特征排名)
- rank_features(特征排名)
- search_as_you_type(输入即搜索)
- Sparse vector
- Text
- Token count
- Shape
- Constant keyword
- Meta-Fields
- Mapping parameters
- Dynamic Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Enrich your data
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- CSV Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Enrich Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Inference Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- ILM: Manage the index lifecycle
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat shards
- cat segments
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Document APIs
- Enrich APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create inference trained model
- Delete data frame analytics jobs
- Delete inference trained model
- Evaluate data frame analytics
- Explain data frame analytics API
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get inference trained model
- Get inference trained model stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SAML prepare authentication API
- SAML authenticate API
- SAML logout API
- SAML invalidate API
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management API
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Breaking changes
- Release notes
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1