本地英文版地址: ../en/logging.html
Elasticsearch 使用 Log4j 2 进行日志记录。
Log4j 2 可以使用 log4j2.properties 文件进行配置。
Elasticsearch公开了三个属性,${sys:es.logs.base_path}
、${sys:es.logs.cluster_name}
以及 ${sys:es.logs.node_name}
,可以在配置文件中引用这些属性来确定日志文件的位置。
属性 ${sys:es.logs.base_path}
将解析为日志目录,${sys:es.logs.cluster_name}
将解析为集群名称(在默认配置中用作日志文件名的前缀),而${sys:es.logs.node_name}
将解析为节点名称(如果明确设置了节点名称)。
比如,如果日志目录(path.logs
)是/var/log/elasticsearch
,集群名称是production
,那么${sys:es.logs.base_path}
就会解析为/var/log/elasticsearch
,${sys:es.logs.base_path}${sys:file.separator}${sys:es.logs.cluster_name}.log
将解析为/var/log/elasticsearch/production.log
。
######## Server JSON ############################ appender.rolling.type = RollingFile appender.rolling.name = rolling appender.rolling.fileName = ${sys:es.logs.base_path}${sys:file.separator}${sys:es.logs.cluster_name}_server.json appender.rolling.layout.type = ESJsonLayout appender.rolling.layout.type_name = server appender.rolling.filePattern = ${sys:es.logs.base_path}${sys:file.separator}${sys:es.logs.cluster_name}-%d{yyyy-MM-dd}-%i.json.gz appender.rolling.policies.type = Policies appender.rolling.policies.time.type = TimeBasedTriggeringPolicy appender.rolling.policies.time.interval = 1 appender.rolling.policies.time.modulate = true appender.rolling.policies.size.type = SizeBasedTriggeringPolicy appender.rolling.policies.size.size = 256MB appender.rolling.strategy.type = DefaultRolloverStrategy appender.rolling.strategy.fileIndex = nomax appender.rolling.strategy.action.type = Delete appender.rolling.strategy.action.basepath = ${sys:es.logs.base_path} appender.rolling.strategy.action.condition.type = IfFileName appender.rolling.strategy.action.condition.glob = ${sys:es.logs.cluster_name}-* appender.rolling.strategy.action.condition.nested_condition.type = IfAccumulatedFileSize appender.rolling.strategy.action.condition.nested_condition.exceeds = 2GB ################################################
配置 |
|
日志记录到 |
|
使用 JSON 布局 |
|
|
|
滚动(roll)日志到 |
|
使用一个基于时间的滚动策略 |
|
以天为基础(每天)滚动日志 |
|
在一天的边界上对齐滚动(而不是每24小时滚动一次) |
|
使用基于大小的滚动策略 |
|
日志达到 256 MB 时滚动 |
|
滚动日志时使用删除操作 |
|
仅删除与文件模式匹配的日志 |
|
模式是只删除主日志 |
|
只有当我们积累了太多的压缩日志时才删除 |
|
压缩日志的大小条件是2 GB |
######## Server - old style pattern ########### appender.rolling_old.type = RollingFile appender.rolling_old.name = rolling_old appender.rolling_old.fileName = ${sys:es.logs.base_path}${sys:file.separator}${sys:es.logs.cluster_name}_server.log appender.rolling_old.layout.type = PatternLayout appender.rolling_old.layout.pattern = [%d{ISO8601}][%-5p][%-25c{1.}] [%node_name]%marker %m%n appender.rolling_old.filePattern = ${sys:es.logs.base_path}${sys:file.separator}${sys:es.logs.cluster_name}-%d{yyyy-MM-dd}-%i.old_log.gz
Log4j 的配置解析会被任何无关的 空白(whitespace) 混淆;如果你在这个页面上复制和粘贴任何 Log4j 设置,或者输入任何 Log4j 配置,一定要移除(trim)任何前后空白。
注意,你可以在appender.rolling.filePattern
中使用.zip
取代.gz
,以使用 zip 格式压缩滚动的日志。如果你把.gz
扩展名移除,则日志在滚动时不会被压缩。
如果要将日志文件保留指定的一段时间,可以使用带有删除操作的滚动策略。
appender.rolling.strategy.type = DefaultRolloverStrategy appender.rolling.strategy.action.type = Delete appender.rolling.strategy.action.basepath = ${sys:es.logs.base_path} appender.rolling.strategy.action.condition.type = IfFileName appender.rolling.strategy.action.condition.glob = ${sys:es.logs.cluster_name}-* appender.rolling.strategy.action.condition.nested_condition.type = IfLastModified appender.rolling.strategy.action.condition.nested_condition.age = 7D
配置 |
|
配置用于处理滚动的 |
|
Elasticsearch 日志的基本路径 |
|
应用滚动处理时的条件 |
|
从与 |
|
应用于与通配符匹配的文件的嵌套条件 (A nested condition to apply to files matching the glob) |
|
日志保留 7 天 |
只要将多个配置文件命名为log4j2.properties
,就可以加载多个配置文件(在这种情况下它们将被合并),并将 Elasticsearch 配置目录作为根目录;这对公开附加日志的插件很有用。
日志(logger) 部分包含 java 包及相对应的日志级别。
附加器(appender) 部分包含日志的目的地。
关于如何定制日志记录和所有支持的附加器的详细信息可以在Log4j 文档中找到。
配置日志级别 (configuring logging levels)
有四种配置日志级别的方法,每种方法都有与之相对应的使用场景。
-
通过命令行:
-E <name of logging hierarchy>=<level>
(比如,-E logger.org.elasticsearch.discovery=debug
). 当你临时调试单个节点上的问题(例如,启动或开发过程中的问题)时,这是最合适的。 -
通过
elasticsearch.yml
:<name of logging hierarchy>: <level>
(比如,logger.org.elasticsearch.discovery: debug
). 当你临时调试一个问题,但没有通过命令行(例如,通过服务)启动 Elasticsearch 时,或者你希望在更持久的基础上调整日志级别时,这是最合适的。 -
通过 集群设置:
PUT /_cluster/settings { "transient": { "<name of logging hierarchy>": "<level>" } }
比如:
PUT /_cluster/settings { "transient": { "logger.org.elasticsearch.discovery": "DEBUG" } }
当你需要动态地调整正在运行的集群上的日志级别时,这是最合适的。
-
通过
log4j2.properties
:logger.<unique_identifier>.name = <name of logging hierarchy> logger.<unique_identifier>.level = <level>
比如:
logger.discovery.name = org.elasticsearch.discovery logger.discovery.level = debug
当你需要对日志进行细粒度控制时,这是最合适的(例如,你想要将日志发送到另一个文件,或者以不同的方式管理日志;这是一个罕见的用例)。
弃用日志 (deprecation logging)
除了常规日志之外,Elasticsearch 还允许你开启记录 弃用的操作(deprecated action) 的日志。
例如,这允许你尽早确定将来是否需要迁移某些功能。
默认情况下,在 WARN
级别启用弃用日志记录,在该级别会发出所有弃用日志消息。
logger.deprecation.level = warn
这将在日志目录中创建一个每日滚动的弃用日志文件。请定期检查该文件,尤其是当你打算升级到新的主要版本时。
默认的日志记录配置已将弃用日志的滚动策略设置为在 1 GB 后滚动和压缩,并最多保留五个日志文件(四个滚动日志和一个活动的日志)。
你可以在config/log4j2.properties
文件中禁用它,方法是将弃用日志级别设置为error
,如下所示:
logger.deprecation.name = org.elasticsearch.deprecation logger.deprecation.level = error
如果X-Opaque-Id
被用作 HTTP 头,你可以确定是什么触发了弃用的功能。用户 ID 包含在弃用 JSON 日志的X-Opaque-ID
字段中。
{ "type": "deprecation", "timestamp": "2019-08-30T12:07:07,126+02:00", "level": "WARN", "component": "o.e.d.r.a.a.i.RestCreateIndexAction", "cluster.name": "distribution_run", "node.name": "node-0", "message": "[types removal] Using include_type_name in create index requests is deprecated. The parameter will be removed in the next major version.", "x-opaque-id": "MY_USER_ID", "cluster.uuid": "Aq-c-PAeQiK3tfBYtig9Bw", "node.id": "D7fUYfnfTLa2D7y-xw6tZg" }
JSON 日志格式
为了更容易解析 Elasticsearch 日志,日志现在已经以 JSON 格式打印。
这是由 Log4J 布局属性appender.rolling.layout.type = ESJsonLayout
配置的。
此布局要求设置type_name
属性,该属性用于在解析时区分日志流。
appender.rolling.layout.type = ESJsonLayout appender.rolling.layout.type_name = server
每行包含一个 JSON 文档,其属性在 ESJsonLayout
中配置。
有关更多详细信息,请参见此类javadoc。
然而,如果一个 JSON 文档包含一个异常,它将被打印成多行。
第一行将包含常规属性,随后的行将包含格式化为 JSON 数组的栈跟踪信息。
你仍然可以使用自己的自定义布局。
为此,请用不同的布局替换appender.rolling.layout.type
行。参见下面的示例:
appender.rolling.type = RollingFile appender.rolling.name = rolling appender.rolling.fileName = ${sys:es.logs.base_path}${sys:file.separator}${sys:es.logs.cluster_name}_server.log appender.rolling.layout.type = PatternLayout appender.rolling.layout.pattern = [%d{ISO8601}][%-5p][%-25c{1.}] [%node_name]%marker %.-10000m%n appender.rolling.filePattern = ${sys:es.logs.base_path}${sys:file.separator}${sys:es.logs.cluster_name}-%d{yyyy-MM-dd}-%i.log.gz
- Elasticsearch权威指南: 其他版本:
- Elasticsearch是什么?
- 7.7版本的新特性
- 开始使用Elasticsearch
- 安装和设置
- 升级Elasticsearch
- 搜索你的数据
- 查询领域特定语言(Query DSL)
- SQL access(暂时不翻译)
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- 聚合
- 度量(metric)聚合
- 桶(bucket)聚合
- adjacency_matrix 聚合
- auto_date_histogram 聚合
- children 聚合
- composite 聚合
- date_histogram 聚合
- date_range 聚合
- diversified_sampler 聚合
- filter 聚合
- filters 聚合
- geo_distance 聚合
- geohash_grid 聚合
- geotile_grid 聚合
- global 聚合
- histogram 聚合
- ip_range 聚合
- missing 聚合
- nested 聚合
- parent 聚合
- range 聚合
- rare_terms 聚合
- reverse_nested 聚合
- sampler 聚合
- significant_terms 聚合
- significant_text 聚合
- terms 聚合
- 给范围字段分桶的微妙之处
- 管道(pipeline)聚合
- 矩阵(matrix)聚合
- 重度缓存的聚合
- 只返回聚合的结果
- 聚合元数据
- Returning the type of the aggregation
- 使用转换对聚合结果进行索引
- 脚本
- 映射
- 删除的映射类型
- 字段数据类型
- alias(别名)
- array(数组)
- binary(二进制)
- boolean(布尔)
- date(日期)
- date_nanos(日期纳秒)
- dense_vector(密集矢量)
- histogram(直方图)
- flattened(扁平)
- geo_point(地理坐标点)
- geo_shape(地理形状)
- IP
- join(联结)
- keyword(关键词)
- nested(嵌套)
- numeric(数值)
- object(对象)
- percolator(渗透器)
- range(范围)
- rank_feature(特征排名)
- rank_features(特征排名)
- search_as_you_type(输入即搜索)
- Sparse vector
- Text
- Token count
- Shape
- Constant keyword
- Meta-Fields
- Mapping parameters
- Dynamic Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Enrich your data
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- CSV Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Enrich Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Inference Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- ILM: Manage the index lifecycle
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat shards
- cat segments
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Document APIs
- Enrich APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create inference trained model
- Delete data frame analytics jobs
- Delete inference trained model
- Evaluate data frame analytics
- Explain data frame analytics API
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get inference trained model
- Get inference trained model stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SAML prepare authentication API
- SAML authenticate API
- SAML logout API
- SAML invalidate API
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management API
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Breaking changes
- Release notes
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1