本地英文版地址: ../en/rollup-put-job.html
Create rollup jobs APIedit
Creates a rollup job.
This functionality is experimental and may be changed or removed completely in a future release. Elastic will take a best effort approach to fix any issues, but experimental features are not subject to the support SLA of official GA features.
Requestedit
PUT _rollup/job/<job_id>
Prerequisitesedit
-
If the Elasticsearch security features are enabled, you must have
manage
ormanage_rollup
cluster privileges to use this API. For more information, see Security privileges.
Descriptionedit
The rollup job configuration contains all the details about how the job should run, when it indexes documents, and what future queries will be able to execute against the rollup index.
There are three main sections to the job configuration: the logistical details about the job (cron schedule, etc), the fields that are used for grouping, and what metrics to collect for each group.
Jobs are created in a STOPPED
state. You can start them with the
start rollup jobs API.
Path parametersedit
-
<job_id>
- (Required, string) Identifier for the rollup job. This can be any alphanumeric string and uniquely identifies the data that is associated with the rollup job. The ID is persistent; it is stored with the rolled up data. If you create a job, let it run for a while, then delete the job, the data that the job rolled up is still be associated with this job ID. You cannot create a new job with the same ID since that could lead to problems with mismatched job configurations.
Request bodyedit
-
cron
- (Required, string) A cron string which defines the intervals when the rollup job should be executed. When the interval triggers, the indexer attempts to rollup the data in the index pattern. The cron pattern is unrelated to the time interval of the data being rolled up. For example, you may wish to create hourly rollups of your document but to only run the indexer on a daily basis at midnight, as defined by the cron. The cron pattern is defined just like a Watcher cron schedule.
-
groups
-
(Required, object) Defines the grouping fields and aggregations that are defined for this rollup job. These fields will then be available later for aggregating into buckets.
These aggs and fields can be used in any combination. Think of the
groups
configuration as defining a set of tools that can later be used in aggregations to partition the data. Unlike raw data, we have to think ahead to which fields and aggregations might be used. Rollups provide enough flexibility that you simply need to determine which fields are needed, not in what order they are needed.There are three types of groupings currently available:
-
date_histogram
-
(Required, object) A date histogram group aggregates a
date
field into time-based buckets. This group is mandatory; you currently cannot rollup documents without a timestamp and adate_histogram
group. Thedate_histogram
group has several parameters:-
field
- (Required, string) The date field that is to be rolled up.
-
calendar_interval
orfixed_interval
-
(Required, time units) The interval of time buckets to be generated when rolling up. For example,
60m
produces 60 minute (hourly) rollups. This follows standard time formatting syntax as used elsewhere in Elasticsearch. The interval defines the minimum interval that can be aggregated only. If hourly (60m
) intervals are configured, rollup search can execute aggregations with 60m or greater (weekly, monthly, etc) intervals. So define the interval as the smallest unit that you wish to later query. For more information about the difference between calendar and fixed time intervals, see Calendar vs fixed time intervals.Smaller, more granular intervals take up proportionally more space.
-
delay
-
(Optional,time units) How long to wait before rolling up new documents. By default, the indexer attempts to roll up all data that is available. However, it is not uncommon for data to arrive out of order, sometimes even a few days late. The indexer is unable to deal with data that arrives after a time-span has been rolled up. That is to say, there is no provision to update already-existing rollups.
Instead, you should specify a
delay
that matches the longest period of time you expect out-of-order data to arrive. For example, adelay
of1d
instructs the indexer to roll up documents up tonow - 1d
, which provides a day of buffer time for out-of-order documents to arrive. -
time_zone
-
(Optional, string) Defines what time_zone the rollup documents are stored as.
Unlike raw data, which can shift timezones on the fly, rolled documents have
to be stored with a specific timezone. By default, rollup documents are stored
in
UTC
.
-
-
terms
-
(Optional, object) The terms group can be used on
keyword
or numeric fields to allow bucketing via theterms
aggregation at a later point. The indexer enumerates and stores all values of a field for each time-period. This can be potentially costly for high-cardinality groups such as IP addresses, especially if the time-bucket is particularly sparse.While it is unlikely that a rollup will ever be larger in size than the raw data, defining
terms
groups on multiple high-cardinality fields can effectively reduce the compression of a rollup to a large extent. You should be judicious which high-cardinality fields are included for that reason.The
terms
group has a single parameter:-
fields
-
(Required, string) The set of fields that you wish to collect terms for. This
array can contain fields that are both
keyword
and numerics. Order does not matter.
-
-
histogram
-
(Optional, object) The histogram group aggregates one or more numeric fields into numeric histogram intervals.
The
histogram
group has a two parameters:-
fields
- (Required, array) The set of fields that you wish to build histograms for. All fields specified must be some kind of numeric. Order does not matter.
-
interval
-
(Required, integer) The interval of histogram buckets to be generated when
rolling up. For example, a value of
5
creates buckets that are five units wide (0-5
,5-10
, etc). Note that only one interval can be specified in thehistogram
group, meaning that all fields being grouped via the histogram must share the same interval.
-
-
-
index_pattern
-
(Required, string) The index or index pattern to roll up. Supports wildcard-style patterns (
logstash-*
). The job will attempt to rollup the entire index or index-pattern.The
index_pattern
cannot be a pattern that would also match the destinationrollup_index
. For example, the patternfoo-*
would match the rollup indexfoo-rollup
. This situation would cause problems because the rollup job would attempt to rollup its own data at runtime. If you attempt to configure a pattern that matches therollup_index
, an exception occurs to prevent this behavior.
-
metrics
-
(Optional, object) Defines the metrics to collect for each grouping tuple. By default, only the doc_counts are collected for each group. To make rollup useful, you will often add metrics like averages, mins, maxes, etc. Metrics are defined on a per-field basis and for each field you configure which metric should be collected.
The
metrics
configuration accepts an array of objects, where each object has two parameters:-
field
- (Required, string) The field to collect metrics for. This must be a numeric of some kind.
-
metrics
-
(Required, array) An array of metrics to collect for the field. At least one
metric must be configured. Acceptable metrics are
min
,max
,sum
,avg
, andvalue_count
.
-
-
page_size
- (Required, integer) The number of bucket results that are processed on each iteration of the rollup indexer. A larger value tends to execute faster, but requires more memory during processing. This value has no effect on how the data is rolled up; it is merely used for tweaking the speed or memory cost of the indexer.
-
rollup_index
- (Required, string) The index that contains the rollup results. The index can be shared with other rollup jobs. The data is stored so that it doesn’t interfere with unrelated jobs.
Exampleedit
The following example creates a rollup job named sensor
, targeting the
sensor-*
index pattern:
PUT _rollup/job/sensor { "index_pattern": "sensor-*", "rollup_index": "sensor_rollup", "cron": "*/30 * * * * ?", "page_size" :1000, "groups" : { "date_histogram": { "field": "timestamp", "fixed_interval": "1h", "delay": "7d" }, "terms": { "fields": ["node"] } }, "metrics": [ { "field": "temperature", "metrics": ["min", "max", "sum"] }, { "field": "voltage", "metrics": ["avg"] } ] }
This configuration enables date histograms to be used on the |
|
This configuration defines metrics over two fields: |
When the job is created, you receive the following results:
{ "acknowledged": true }
- Elasticsearch权威指南: 其他版本:
- Elasticsearch是什么?
- 7.7版本的新特性
- 开始使用Elasticsearch
- 安装和设置
- 升级Elasticsearch
- 搜索你的数据
- 查询领域特定语言(Query DSL)
- SQL access(暂时不翻译)
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- 聚合
- 度量(metric)聚合
- 桶(bucket)聚合
- adjacency_matrix 聚合
- auto_date_histogram 聚合
- children 聚合
- composite 聚合
- date_histogram 聚合
- date_range 聚合
- diversified_sampler 聚合
- filter 聚合
- filters 聚合
- geo_distance 聚合
- geohash_grid 聚合
- geotile_grid 聚合
- global 聚合
- histogram 聚合
- ip_range 聚合
- missing 聚合
- nested 聚合
- parent 聚合
- range 聚合
- rare_terms 聚合
- reverse_nested 聚合
- sampler 聚合
- significant_terms 聚合
- significant_text 聚合
- terms 聚合
- 给范围字段分桶的微妙之处
- 管道(pipeline)聚合
- 矩阵(matrix)聚合
- 重度缓存的聚合
- 只返回聚合的结果
- 聚合元数据
- Returning the type of the aggregation
- 使用转换对聚合结果进行索引
- 脚本
- 映射
- 删除的映射类型
- 字段数据类型
- alias(别名)
- array(数组)
- binary(二进制)
- boolean(布尔)
- date(日期)
- date_nanos(日期纳秒)
- dense_vector(密集矢量)
- histogram(直方图)
- flattened(扁平)
- geo_point(地理坐标点)
- geo_shape(地理形状)
- IP
- join(联结)
- keyword(关键词)
- nested(嵌套)
- numeric(数值)
- object(对象)
- percolator(渗透器)
- range(范围)
- rank_feature(特征排名)
- rank_features(特征排名)
- search_as_you_type(输入即搜索)
- Sparse vector
- Text
- Token count
- Shape
- Constant keyword
- Meta-Fields
- Mapping parameters
- Dynamic Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Enrich your data
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- CSV Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Enrich Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Inference Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- ILM: Manage the index lifecycle
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat shards
- cat segments
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Document APIs
- Enrich APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create inference trained model
- Delete data frame analytics jobs
- Delete inference trained model
- Evaluate data frame analytics
- Explain data frame analytics API
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get inference trained model
- Get inference trained model stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SAML prepare authentication API
- SAML authenticate API
- SAML logout API
- SAML invalidate API
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management API
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Breaking changes
- Release notes
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1