本地英文版地址: ../en/tune-for-indexing-speed.html
Tune for indexing speededit
Use bulk requestsedit
Bulk requests will yield much better performance than single-document index requests. In order to know the optimal size of a bulk request, you should run a benchmark on a single node with a single shard. First try to index 100 documents at once, then 200, then 400, etc. doubling the number of documents in a bulk request in every benchmark run. When the indexing speed starts to plateau then you know you reached the optimal size of a bulk request for your data. In case of tie, it is better to err in the direction of too few rather than too many documents. Beware that too large bulk requests might put the cluster under memory pressure when many of them are sent concurrently, so it is advisable to avoid going beyond a couple tens of megabytes per request even if larger requests seem to perform better.
Use multiple workers/threads to send data to Elasticsearchedit
A single thread sending bulk requests is unlikely to be able to max out the indexing capacity of an Elasticsearch cluster. In order to use all resources of the cluster, you should send data from multiple threads or processes. In addition to making better use of the resources of the cluster, this should help reduce the cost of each fsync.
Make sure to watch for TOO_MANY_REQUESTS (429)
response codes
(EsRejectedExecutionException
with the Java client), which is the way that
Elasticsearch tells you that it cannot keep up with the current indexing rate.
When it happens, you should pause indexing a bit before trying again, ideally
with randomized exponential backoff.
Similarly to sizing bulk requests, only testing can tell what the optimal number of workers is. This can be tested by progressively increasing the number of workers until either I/O or CPU is saturated on the cluster.
Unset or increase the refresh intervaledit
The operation that consists of making changes visible to search - called a refresh - is costly, and calling it often while there is ongoing indexing activity can hurt indexing speed.
By default, Elasticsearch periodically refreshes indices every second, but only on indices that have received one search request or more in the last 30 seconds.
This is the optimal configuration if you have no or very little search traffic (e.g. less than one search request every 5 minutes) and want to optimize for indexing speed. This behavior aims to automatically optimize bulk indexing in the default case when no searches are performed. In order to opt out of this behavior set the refresh interval explicitly.
On the other hand, if your index experiences regular search requests, this
default behavior means that Elasticsearch will refresh your index every 1
second. If you can afford to increase the amount of time between when a document
gets indexed and when it becomes visible, increasing the
index.refresh_interval
to a larger value, e.g.
30s
, might help improve indexing speed.
Disable replicas for initial loadsedit
If you have a large amount of data that you want to load all at once into
Elasticsearch, it may be beneficial to set index.number_of_replicas
to 0
in
order to speep up indexing. Having no replicas means that losing a single node
may incur data loss, so it is important that the data lives elsewhere so that
this initial load can be retried in case of an issue. Once the initial load is
finished, you can set index.number_of_replicas
back to its original value.
If index.refresh_interval
is configured in the index settings, it may further
help to unset it during this initial load and setting it back to its original
value once the initial load is finished.
Disable swappingedit
You should make sure that the operating system is not swapping out the java process by disabling swapping.
Give memory to the filesystem cacheedit
The filesystem cache will be used in order to buffer I/O operations. You should make sure to give at least half the memory of the machine running Elasticsearch to the filesystem cache.
Use auto-generated idsedit
When indexing a document that has an explicit id, Elasticsearch needs to check whether a document with the same id already exists within the same shard, which is a costly operation and gets even more costly as the index grows. By using auto-generated ids, Elasticsearch can skip this check, which makes indexing faster.
Use faster hardwareedit
If indexing is I/O bound, you should investigate giving more memory to the
filesystem cache (see above) or buying faster drives. In particular SSD drives
are known to perform better than spinning disks. Always use local storage,
remote filesystems such as NFS
or SMB
should be avoided. Also beware of
virtualized storage such as Amazon’s Elastic Block Storage
. Virtualized
storage works very well with Elasticsearch, and it is appealing since it is so
fast and simple to set up, but it is also unfortunately inherently slower on an
ongoing basis when compared to dedicated local storage. If you put an index on
EBS
, be sure to use provisioned IOPS otherwise operations could be quickly
throttled.
Stripe your index across multiple SSDs by configuring a RAID 0 array. Remember that it will increase the risk of failure since the failure of any one SSD destroys the index. However this is typically the right tradeoff to make: optimize single shards for maximum performance, and then add replicas across different nodes so there’s redundancy for any node failures. You can also use snapshot and restore to backup the index for further insurance.
Indexing buffer sizeedit
If your node is doing only heavy indexing, be sure
indices.memory.index_buffer_size
is large enough to give
at most 512 MB indexing buffer per shard doing heavy indexing (beyond that
indexing performance does not typically improve). Elasticsearch takes that
setting (a percentage of the java heap or an absolute byte-size), and
uses it as a shared buffer across all active shards. Very active shards will
naturally use this buffer more than shards that are performing lightweight
indexing.
The default is 10%
which is often plenty: for example, if you give the JVM
10GB of memory, it will give 1GB to the index buffer, which is enough to host
two shards that are heavily indexing.
Use cross-cluster replication to prevent searching from stealing resources from indexingedit
Within a single cluster, indexing and searching can compete for resources. By setting up two clusters, configuring cross-cluster replication to replicate data from one cluster to the other one, and routing all searches to the cluster that has the follower indices, search activity will no longer steal resources from indexing on the cluster that hosts the leader indices.
Additional optimizationsedit
Many of the strategies outlined in Tune for disk usage also provide an improvement in the speed of indexing.
- Elasticsearch权威指南: 其他版本:
- Elasticsearch是什么?
- 7.7版本的新特性
- 开始使用Elasticsearch
- 安装和设置
- 升级Elasticsearch
- 搜索你的数据
- 查询领域特定语言(Query DSL)
- SQL access(暂时不翻译)
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- 聚合
- 度量(metric)聚合
- 桶(bucket)聚合
- adjacency_matrix 聚合
- auto_date_histogram 聚合
- children 聚合
- composite 聚合
- date_histogram 聚合
- date_range 聚合
- diversified_sampler 聚合
- filter 聚合
- filters 聚合
- geo_distance 聚合
- geohash_grid 聚合
- geotile_grid 聚合
- global 聚合
- histogram 聚合
- ip_range 聚合
- missing 聚合
- nested 聚合
- parent 聚合
- range 聚合
- rare_terms 聚合
- reverse_nested 聚合
- sampler 聚合
- significant_terms 聚合
- significant_text 聚合
- terms 聚合
- 给范围字段分桶的微妙之处
- 管道(pipeline)聚合
- 矩阵(matrix)聚合
- 重度缓存的聚合
- 只返回聚合的结果
- 聚合元数据
- Returning the type of the aggregation
- 使用转换对聚合结果进行索引
- 脚本
- 映射
- 删除的映射类型
- 字段数据类型
- alias(别名)
- array(数组)
- binary(二进制)
- boolean(布尔)
- date(日期)
- date_nanos(日期纳秒)
- dense_vector(密集矢量)
- histogram(直方图)
- flattened(扁平)
- geo_point(地理坐标点)
- geo_shape(地理形状)
- IP
- join(联结)
- keyword(关键词)
- nested(嵌套)
- numeric(数值)
- object(对象)
- percolator(渗透器)
- range(范围)
- rank_feature(特征排名)
- rank_features(特征排名)
- search_as_you_type(输入即搜索)
- Sparse vector
- Text
- Token count
- Shape
- Constant keyword
- Meta-Fields
- Mapping parameters
- Dynamic Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Enrich your data
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- CSV Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Enrich Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Inference Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- ILM: Manage the index lifecycle
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat shards
- cat segments
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Document APIs
- Enrich APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create inference trained model
- Delete data frame analytics jobs
- Delete inference trained model
- Evaluate data frame analytics
- Explain data frame analytics API
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get inference trained model
- Get inference trained model stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SAML prepare authentication API
- SAML authenticate API
- SAML logout API
- SAML invalidate API
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management API
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Breaking changes
- Release notes
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1