本地英文版地址: ../en/parent-join.html
join
数据类型是一种特殊的字段,它在同一个索引的文档中创建父-子关系。
relations
部分定义了文档中一组可能的关系,每个关系都是一个父名称和一个子名称。
父-子关系可以定义如下:
PUT /my_index { "mappings": { "properties": { "my_id": { "type": "keyword" }, "my_join_field": { "type": "join", "relations": { "question": "answer" } } } } }
要使用 join 对文档进行索引,必须在source
中提供关系的名称和文档的可选父文档。
例如,下面这个例子在question
上下文中创建了两个 parent
文档:
PUT /my_index/_doc/1?refresh { "my_id": "1", "text": "This is a question", "my_join_field": { "name": "question" } } PUT /my_index/_doc/2?refresh { "my_id": "2", "text": "This is another question", "my_join_field": { "name": "question" } }
在给父文档编制索引时,可以选择仅指定关系的名称作为快捷方式,而不是将其封装在普通对象符号中:
PUT my_index/_doc/1?refresh { "my_id": "1", "text": "This is a question", "my_join_field": "question" } PUT my_index/_doc/2?refresh { "my_id": "2", "text": "This is another question", "my_join_field": "question" }
当为子文档编制索引时,必须在_source
中添加关系的名称以及文档的父id。
需要在同一个分片中索引父文档的传承关系,因此必须始终使用更大的父id来路由子文档。
例如,下面这个例子显示了如何索引两个 child
文档:
PUT my_index/_doc/3?routing=1&refresh { "my_id": "3", "text": "This is an answer", "my_join_field": { "name": "answer", "parent": "1" } } PUT my_index/_doc/4?routing=1&refresh { "my_id": "4", "text": "This is another answer", "my_join_field": { "name": "answer", "parent": "1" } }
join 字段不应该像关系型数据库中的 JOIN 一样使用。
在Elasticsearch中,良好性能的关键是将数据反归一化到文档中。
每个 join 字段、has_child
或has_parent
查询都会显著提高查询性能。
join 字段有意义的唯一情况是数据包含一对多关系,其中一个实体的数量远远超过另一个实体。 这种情况的一个例子是产品及其优惠信息的用例。 在优惠信息明显多于产品数量的情况下,将产品建模为父文档,将优惠建模为子文档是有意义的。
父联结(parent join)创建一个字段来索引文档中关系的名称(my_parent
, my_child
,...)。
它还为每个父-子关系创建一个字段。
该字段的名称是join
字段的名称,后跟#
及关系中父字段的名称。
例如,对于my_parent
→ [my_child
, another_child
]关系,join
字段会创建一个名为my_join_field#my_parent
的附加字段。
如果该文档是一个子文档(my_child
or another_child
),则此字段包含文档链接到的父文档的_id
,如果它是一个父文档(my_parent
),则包含文档的_id
。
当搜索一个包含join
字段的索引时,搜索响应中总是返回这两个字段:
GET my_index/_search { "query": { "match_all": {} }, "sort": ["my_id"] }
它将返回:
{ ..., "hits": { "total" : { "value": 4, "relation": "eq" }, "max_score": null, "hits": [ { "_index": "my_index", "_type": "_doc", "_id": "1", "_score": null, "_source": { "my_id": "1", "text": "This is a question", "my_join_field": "question" }, "sort": [ "1" ] }, { "_index": "my_index", "_type": "_doc", "_id": "2", "_score": null, "_source": { "my_id": "2", "text": "This is another question", "my_join_field": "question" }, "sort": [ "2" ] }, { "_index": "my_index", "_type": "_doc", "_id": "3", "_score": null, "_routing": "1", "_source": { "my_id": "3", "text": "This is an answer", "my_join_field": { "name": "answer", "parent": "1" } }, "sort": [ "3" ] }, { "_index": "my_index", "_type": "_doc", "_id": "4", "_score": null, "_routing": "1", "_source": { "my_id": "4", "text": "This is another answer", "my_join_field": { "name": "answer", "parent": "1" } }, "sort": [ "4" ] } ] } }
更多信息,请参考has_child
和has_parent
查询,children
聚合及内部命中(inner hits)。
可以在聚合和脚本中访问join
字段的值,并且可以使用parent_id
查询进行查询:
GET my_index/_search { "query": { "parent_id": { "type": "answer", "id": "1" } }, "aggs": { "parents": { "terms": { "field": "my_join_field#question", "size": 10 } } }, "script_fields": { "parent": { "script": { "source": "doc['my_join_field#question']" } } } }
查询 |
|
在 |
|
在脚本中访问父对象的id字段 |
字段使用join
field uses 全局序号(global ordinals)来加速联结。
在对分片进行任何更改后,都需要重新构建全局序号。
一个分片中存储的父 id 值越多,为join
字段重新构建全局序号所需的时间就越长。
默认情况下,会急切地构建全局序号:如果索引发生了变化,那么join
字段的全局序号将作为 refresh 的一部分重新构建。
这可能会大大增加 refresh 的时间。
然而,大多数情况下这是正确的权衡,否则当使用第一个 父联结(parent-join) 查询或聚合时,将重新构建全局序号。
这可能会给你的用户带来显著的延迟峰值,通常情况下,当发生多次写入时,可能会在单个 refresh 间隔内尝试重建join
字段的多个全局序号,这种情况会更糟。
当join
字段很少使用但频繁写入时,禁用 快速加载(eager loading) 可能是有意义的:
PUT my_index { "mappings": { "properties": { "my_join_field": { "type": "join", "relations": { "question": "answer" }, "eager_global_ordinals": false } } } }
可以按如下方式检查每个父关系的全局序号使用的 heap 的大小:
# Per-index GET _stats/fielddata?human&fields=my_join_field#question # Per-node per-index GET _nodes/stats/indices/fielddata?human&fields=my_join_field#question
也可以为单个父对象定义多个子对象:
不建议使用多层关系来复制关系模型。 每一级关系都会在查询时增加内存和计算方面的开销。 如果你关心性能,应该对数据进行反归一化。
多层级的父-子关系:
PUT my_index { "mappings": { "properties": { "my_join_field": { "type": "join", "relations": { "question": ["answer", "comment"], "answer": "vote" } } } } }
上面的映射表示下面的树状结构:
question / \ / \ comment answer | | vote
为孙子文档编制索引需要routing
值等于曾祖父(曾祖父的传承):
- Elasticsearch权威指南: 其他版本:
- Elasticsearch是什么?
- 7.7版本的新特性
- 开始使用Elasticsearch
- 安装和设置
- 升级Elasticsearch
- 搜索你的数据
- 查询领域特定语言(Query DSL)
- SQL access(暂时不翻译)
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- 聚合
- 度量(metric)聚合
- 桶(bucket)聚合
- adjacency_matrix 聚合
- auto_date_histogram 聚合
- children 聚合
- composite 聚合
- date_histogram 聚合
- date_range 聚合
- diversified_sampler 聚合
- filter 聚合
- filters 聚合
- geo_distance 聚合
- geohash_grid 聚合
- geotile_grid 聚合
- global 聚合
- histogram 聚合
- ip_range 聚合
- missing 聚合
- nested 聚合
- parent 聚合
- range 聚合
- rare_terms 聚合
- reverse_nested 聚合
- sampler 聚合
- significant_terms 聚合
- significant_text 聚合
- terms 聚合
- 给范围字段分桶的微妙之处
- 管道(pipeline)聚合
- 矩阵(matrix)聚合
- 重度缓存的聚合
- 只返回聚合的结果
- 聚合元数据
- Returning the type of the aggregation
- 使用转换对聚合结果进行索引
- 脚本
- 映射
- 删除的映射类型
- 字段数据类型
- alias(别名)
- array(数组)
- binary(二进制)
- boolean(布尔)
- date(日期)
- date_nanos(日期纳秒)
- dense_vector(密集矢量)
- histogram(直方图)
- flattened(扁平)
- geo_point(地理坐标点)
- geo_shape(地理形状)
- IP
- join(联结)
- keyword(关键词)
- nested(嵌套)
- numeric(数值)
- object(对象)
- percolator(渗透器)
- range(范围)
- rank_feature(特征排名)
- rank_features(特征排名)
- search_as_you_type(输入即搜索)
- Sparse vector
- Text
- Token count
- Shape
- Constant keyword
- Meta-Fields
- Mapping parameters
- Dynamic Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Enrich your data
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- CSV Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Enrich Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Inference Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- ILM: Manage the index lifecycle
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat shards
- cat segments
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Document APIs
- Enrich APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create inference trained model
- Delete data frame analytics jobs
- Delete inference trained model
- Evaluate data frame analytics
- Explain data frame analytics API
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get inference trained model
- Get inference trained model stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SAML prepare authentication API
- SAML authenticate API
- SAML logout API
- SAML invalidate API
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management API
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Breaking changes
- Release notes
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1