String Stats Aggregationedit
A multi-value
metrics aggregation that computes statistics over string values extracted from the aggregated documents.
These values can be retrieved either from specific keyword
fields in the documents or can be generated by a provided script.
The string stats aggregation returns the following results:
-
count
- The number of non-empty fields counted. -
min_length
- The length of the shortest term. -
max_length
- The length of the longest term. -
avg_length
- The average length computed over all terms. -
entropy
- The Shannon Entropy value computed over all terms collected by the aggregation. Shannon entropy quantifies the amount of information contained in the field. It is a very useful metric for measuring a wide range of properties of a data set, such as diversity, similarity, randomness etc.
Assuming the data consists of twitter messages:
POST /twitter/_search?size=0 { "aggs" : { "message_stats" : { "string_stats" : { "field" : "message.keyword" } } } }
The above aggregation computes the string statistics for the message
field in all documents. The aggregation type
is string_stats
and the field
parameter defines the field of the documents the stats will be computed on.
The above will return the following:
{ ... "aggregations": { "message_stats" : { "count" : 5, "min_length" : 24, "max_length" : 30, "avg_length" : 28.8, "entropy" : 3.94617750050791 } } }
The name of the aggregation (message_stats
above) also serves as the key by which the aggregation result can be retrieved from
the returned response.
Character distributionedit
The computation of the Shannon Entropy value is based on the probability of each character appearing in all terms collected
by the aggregation. To view the probability distribution for all characters, we can add the show_distribution
(default: false
) parameter.
POST /twitter/_search?size=0 { "aggs" : { "message_stats" : { "string_stats" : { "field" : "message.keyword", "show_distribution": true } } } }
Set the |
{ ... "aggregations": { "message_stats" : { "count" : 5, "min_length" : 24, "max_length" : 30, "avg_length" : 28.8, "entropy" : 3.94617750050791, "distribution" : { " " : 0.1527777777777778, "e" : 0.14583333333333334, "s" : 0.09722222222222222, "m" : 0.08333333333333333, "t" : 0.0763888888888889, "h" : 0.0625, "a" : 0.041666666666666664, "i" : 0.041666666666666664, "r" : 0.041666666666666664, "g" : 0.034722222222222224, "n" : 0.034722222222222224, "o" : 0.034722222222222224, "u" : 0.034722222222222224, "b" : 0.027777777777777776, "w" : 0.027777777777777776, "c" : 0.013888888888888888, "E" : 0.006944444444444444, "l" : 0.006944444444444444, "1" : 0.006944444444444444, "2" : 0.006944444444444444, "3" : 0.006944444444444444, "4" : 0.006944444444444444, "y" : 0.006944444444444444 } } } }
The distribution
object shows the probability of each character appearing in all terms. The characters are sorted by descending probability.
Scriptedit
Computing the message string stats based on a script:
POST /twitter/_search?size=0 { "aggs" : { "message_stats" : { "string_stats" : { "script" : { "lang": "painless", "source": "doc['message.keyword'].value" } } } } }
This will interpret the script
parameter as an inline
script with the painless
script language and no script parameters.
To use a stored script use the following syntax:
POST /twitter/_search?size=0 { "aggs" : { "message_stats" : { "string_stats" : { "script" : { "id": "my_script", "params" : { "field" : "message.keyword" } } } } } }
Value Scriptedit
We can use a value script to modify the message (eg we can add a prefix) and compute the new stats:
POST /twitter/_search?size=0 { "aggs" : { "message_stats" : { "string_stats" : { "field" : "message.keyword", "script" : { "lang": "painless", "source": "params.prefix + _value", "params" : { "prefix" : "Message: " } } } } } }
Missing valueedit
The missing
parameter defines how documents that are missing a value should be treated.
By default they will be ignored but it is also possible to treat them as if they had a value.