WARNING: The 2.x versions of Elasticsearch have passed their EOL dates. If you are running a 2.x version, we strongly advise you to upgrade.
This documentation is no longer maintained and may be removed. For the latest information, see the current Elasticsearch documentation.
Exact Values Versus Full Textedit
Data in Elasticsearch can be broadly divided into two types: exact values and full text.
Exact values are exactly what they sound like. Examples are a date or a
user ID, but can also include exact strings such as a username or an email
address. The exact value Foo
is not the same as the exact value foo
.
The exact value 2014
is not the same as the exact value 2014-09-15
.
Full text, on the other hand, refers to textual data—usually written in some human language — like the text of a tweet or the body of an email.
Full text is often referred to as unstructured data, which is a misnomer—natural language is highly structured. The problem is that the rules of natural languages are complex, which makes them difficult for computers to parse correctly. For instance, consider this sentence:
May is fun but June bores me.
Does it refer to months or to people?
Exact values are easy to query. The decision is binary; a value either matches the query, or it doesn’t. This kind of query is easy to express with SQL:
WHERE name = "John Smith" AND user_id = 2 AND date > "2014-09-15"
Querying full-text data is much more subtle. We are not just asking, “Does this document match the query” but “How well does this document match the query?” In other words, how relevant is this document to the given query?
We seldom want to match the whole full-text field exactly. Instead, we want to search within text fields. Not only that, but we expect search to understand our intent:
-
A search for
UK
should also return documents mentioning theUnited Kingdom
. -
A search for
jump
should also matchjumped
,jumps
,jumping
, and perhaps evenleap
. -
johnny walker
should matchJohnnie Walker
, andjohnnie depp
should matchJohnny Depp
. -
fox news hunting
should return stories about hunting on Fox News, whilefox hunting news
should return news stories about fox hunting.
To facilitate these types of queries on full-text fields, Elasticsearch first analyzes the text, and then uses the results to build an inverted index. We will discuss the inverted index and the analysis process in the next two sections.
- Elasticsearch - The Definitive Guide:
- Foreword
- Preface
- Getting Started
- You Know, for Search…
- Installing and Running Elasticsearch
- Talking to Elasticsearch
- Document Oriented
- Finding Your Feet
- Indexing Employee Documents
- Retrieving a Document
- Search Lite
- Search with Query DSL
- More-Complicated Searches
- Full-Text Search
- Phrase Search
- Highlighting Our Searches
- Analytics
- Tutorial Conclusion
- Distributed Nature
- Next Steps
- Life Inside a Cluster
- Data In, Data Out
- What Is a Document?
- Document Metadata
- Indexing a Document
- Retrieving a Document
- Checking Whether a Document Exists
- Updating a Whole Document
- Creating a New Document
- Deleting a Document
- Dealing with Conflicts
- Optimistic Concurrency Control
- Partial Updates to Documents
- Retrieving Multiple Documents
- Cheaper in Bulk
- Distributed Document Store
- Searching—The Basic Tools
- Mapping and Analysis
- Full-Body Search
- Sorting and Relevance
- Distributed Search Execution
- Index Management
- Inside a Shard
- You Know, for Search…
- Search in Depth
- Structured Search
- Full-Text Search
- Multifield Search
- Proximity Matching
- Partial Matching
- Controlling Relevance
- Theory Behind Relevance Scoring
- Lucene’s Practical Scoring Function
- Query-Time Boosting
- Manipulating Relevance with Query Structure
- Not Quite Not
- Ignoring TF/IDF
- function_score Query
- Boosting by Popularity
- Boosting Filtered Subsets
- Random Scoring
- The Closer, The Better
- Understanding the price Clause
- Scoring with Scripts
- Pluggable Similarity Algorithms
- Changing Similarities
- Relevance Tuning Is the Last 10%
- Dealing with Human Language
- Aggregations
- Geolocation
- Modeling Your Data
- Administration, Monitoring, and Deployment