模糊查询 (Fuzzy Query)edit

fuzzy 查询term 查询的模糊等价。 也许你很少直接使用它,但是理解它是如何工作的,可以帮助你在更高级别的 match 查询中使用模糊性。

为了解它是如何运作的,我们首先索引一些文档:

POST /my_index/my_type/_bulk
{ "index": { "_id": 1 }}
{ "text": "Surprise me!"}
{ "index": { "_id": 2 }}
{ "text": "That was surprising."}
{ "index": { "_id": 3 }}
{ "text": "I wasn't surprised."}

现在我们可以为词 surprize 运行一个 fuzzy 查询:

GET /my_index/my_type/_search
{
  "query": {
    "fuzzy": {
      "text": "surprize"
    }
  }
}

fuzzy 查询是一个词项级别(term-level)的查询,所以它不做任何分析。它通过某个词项以及指定的 fuzziness 查找到词典中所有的词项。 fuzziness 默认设置为 AUTO

在我们的例子中, surprisesurprisesurprised 的编辑距离都在 2 以内, 所以文档 1 和 3 匹配。通过以下查询,我们可以减少匹配度到仅匹配 surprise

GET /my_index/my_type/_search
{
  "query": {
    "fuzzy": {
      "text": {
        "value": "surprize",
        "fuzziness": 1
      }
    }
  }
}

提高性能edit

fuzzy 查询的工作原理是给定原始词项及构造一个 莱温斯坦机器人 (Levenshtein automaton) — 像一个能表示所有原始字符串的指定编辑距离的字符串的大图表。

然后模糊查询使用这个"机器人"依次高效遍历词典中的所有词项以确定是否匹配。 一旦收集了词典中存在的所有匹配项,就可以计算匹配文档列表。

当然,根据存储在索引中的数据类型,一个编辑距离为 2 的模糊查询能够匹配一个非常大数量的词项, 执行效率会非常糟糕。 下面两个参数可以用来限制对性能的影响:

prefix_length
不能被 “模糊化” 的初始字符数。 大部分的拼写错误发生在词的结尾,而不是词的开始。 例如通过将 prefix_length 设置为 3 ,你可能够显著降低匹配的词项数量。
max_expansions
如果一个模糊查询扩展了三个或四个模糊选项, 这些新的模糊选项也许是有意义的。如果它产生 1000 个模糊选项,那么就基本没有意义了。 设置 max_expansions 用来限制将产生的模糊选项的总数量。模糊查询将收集匹配词项直到达到 max_expansions 的限制。